Euclidean Structure Recovery from Motion in Perspective Image Sequences via Hankel Rank Minimization
نویسندگان
چکیده
In this paper we consider the problem of recovering 3D Euclidean structure from multi-frame point correspondence data in image sequences under perspective projection. Existing approaches rely either only on geometrical constraints reflecting the rigid nature of the object, or exploit temporal information by recasting the problem into a nonlinear filtering form. In contrast, here we introduce a new constraint that implicitly exploits the temporal ordering of the frames, leading to a provably correct algorithm to find Euclidean structure (up to a single scaling factor) without the need to alternate between projective depth and motion estimation, estimate the Fundamental matrices or assume a camera motion model. Finally, the proposed approach does not require an accurate calibration of the camera. The accuracy of the algorithm is illustrated using several examples involving both synthetic and real data.
منابع مشابه
Recovery of Piece-Wise Planar and Piece-Wise Rigid Models from Non-Rigid Motion
We present a framework for estimating 3D relative structure (shape) and motion given objects undergoing non-rigid deformation as observed from a fixed camera, under perspective projection. Deforming surfaces are approximated as piece-wise planar, and piece-wise rigid. Robust registration methods allow tracking of corresponding image patches from view to view and recovery of 3D shape despite occ...
متن کاملSpectral Compressed Sensing via Structured Matrix Completion
The paper studies the problem of recovering a spectrally sparse object from a small number of time domain samples. Specifically, the object of interest with ambient dimension n is assumed to be a mixture of r complex multi-dimensional sinusoids, while the underlying frequencies can assume any value in the unit disk. Conventional compressed sensing paradigms suffer from the basis mismatch issue ...
متن کاملSparse Recovery on Euclidean Jordan Algebras
We consider the sparse recovery problem on Euclidean Jordan algebra (SREJA), which includes sparse signal recovery and low-rank symmetric matrix recovery as special cases. We introduce the restricted isometry property, null space property (NSP), and s-goodness for linear transformations in s-sparse element recovery on Euclidean Jordan algebra (SREJA), all of which provide sufficient conditions ...
متن کاملMR artifacts removal using sparse + low rank decomposition of annihilating filter based Hankel matrix
In this paper, we propose a sparse and low-rank decomposition of annihilating filter-based Hankel matrix for removing MR artifacts such as motion, RF noises, or herringbone artifacts. Based on the observation that some MR artifacts are originated from k-space outliers, we employ a recently proposed image modeling method using annihilating filter-based low-rank Hankel matrix approach (ALOHA) to ...
متن کاملComputation Optical Flow Using Pipeline Architecture
Accurate estimation of motion from time-varying imagery has been a popular problem in vision studies, This information can be used in segmentation, 3D motion and shape recovery, target tracking, and other problems in scene analysis and interpretation. We have presented a dynamic image model for estimating image motion from image sequences, and have shown how the solution can be obtained from a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010